Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Hypertens (Greenwich) ; 25(6): 521-533, 2023 06.
Article in English | MEDLINE | ID: covidwho-2313695

ABSTRACT

High blood pressure (BP) and type-2 diabetes (T2DM) are forerunners of chronic kidney disease and left ventricular dysfunction. Home BP telemonitoring (HTM) and urinary peptidomic profiling (UPP) are technologies enabling risk stratification and personalized prevention. UPRIGHT-HTM (NCT04299529) is an investigator-initiated, multicenter, open-label, randomized trial with blinded endpoint evaluation designed to assess the efficacy of HTM plus UPP (experimental group) over HTM alone (control group) in guiding treatment in asymptomatic patients, aged 55-75 years, with ≥5 cardiovascular risk factors. From screening onwards, HTM data can be freely accessed by all patients and their caregivers; UPP results are communicated early during follow-up to patients and caregivers in the intervention group, but at trial closure in the control group. From May 2021 until January 2023, 235 patients were screened, of whom 53 were still progressing through the run-in period and 144 were randomized. Both groups had similar characteristics, including average age (62.0 years) and the proportions of African Blacks (81.9%), White Europeans (16.7%), women 56.2%, home (31.2%), and office (50.0%) hypertension, T2DM (36.4%), micro-albuminuria (29.4%), and ECG (9.7%) and echocardiographic (11.5%) left ventricular hypertrophy. Home and office BP were 128.8/79.2 mm Hg and 137.1/82.7 mm Hg, respectively, resulting in a prevalence of white-coat, masked and sustained hypertension of 40.3%, 11.1%, and 25.7%. HTM persisted after randomization (48 681 readings up to 15 January 2023). In conclusion, results predominantly from low-resource sub-Saharan centers proved the feasibility of this multi-ethnic trial. The COVID-19 pandemic caused delays and differential recruitment rates across centers.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hypertension , Humans , Female , Middle Aged , Blood Pressure , Hypertension/diagnosis , Hypertension/epidemiology , Research Report , Pandemics , Health Care Reform , Proteomics , Blood Pressure Monitoring, Ambulatory/methods , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology
2.
Blood Press Monit ; 27(Suppl 1): e9, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2270999
3.
Front Public Health ; 9: 669022, 2021.
Article in English | MEDLINE | ID: covidwho-1771102

ABSTRACT

Chronic biological stress may adversely affect adolescents' physical and mental health, but insight in the personal and environmental factors that determine chronic stress is limited. We measured 3-month cumulative hair cortisol concentration (HCC) in 419 adolescents, participating in the Flemish Environment and Health Study. Adolescents' health and lifestyle characteristics, household and neighborhood socio-economic status as well as neighborhood urbanicity were assessed as potential determinants of HCC, using multiple linear regression models. We additionally explored heterogeneity of our results by sex. HCC were significantly higher in boys from densely populated neighborhoods, the association was not significant in girls. Accordingly, boys living outside cities had significantly lower HCC than boys, living in cities. HCC was significantly lower in adolescents with an optimal vitality, a measure of a positive mental health status. In adolescent girls, menarcheal status (pre-/postmenarche) was a significant determinant of HCC. Our findings are the first to suggest that residential urbanicity may have an impact on chronic biological stress in a general population of adolescent boys.


Subject(s)
Hydrocortisone , Adolescent , Female , Hair , Humans , Male , Residence Characteristics , Stress, Physiological
4.
Environ Res ; 208: 112603, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1611723

ABSTRACT

Green spaces are associated with increased well-being and reduced risk of developing psychiatric disorders. In this study, we aimed to investigate how residential proximity to green spaces was associated with stress response buffering during the COVID-19 pandemic in a prospective cohort of young mothers. We collected information on stress in 766 mothers (mean age: 36.6 years) from the ENVIRONAGE birth cohort at baseline of the study (from 2010 onwards), and during the COVID-19 pandemic (from December 2020 until May 2021). Self-reported stress responses due to the COVID-19 pandemic were the outcome measure. Green space was quantified in several radiuses around the residence based on high-resolution (1 m2) data. Using ordinal logistic regression, we estimated the odds of better resistance to reported stress, while controlling for age, socio-economic status, stress related to care for children, urbanicity, and household change in income during the pandemic. In sensitivity analyses we corrected for pre-pandemic stress levels, BMI, physical activity, and changes in health-related habits during the pandemic. We found that for an inter-quartile range contrast in residential green space 300 m and 500 m around the residence, participants were respectively 24% (OR = 1.24, 95%CI: 1.03 to 1.51) and 29% (OR = 1.29, 95%CI: 1.04 to 1.60) more likely to be in a more resistant category, independent of the aforementioned factors. These results remained robust after additionally controlling for pre-pandemic stress levels, BMI, physical activity, smoking status, urbanicity, psychological disorders, and changes in health-related habits during the pandemic. This prospective study in young mothers highlights the importance of proximity to green spaces, especially during challenging times.


Subject(s)
COVID-19/psychology , Mothers , Parks, Recreational , Adult , Child, Preschool , Female , Humans , Mothers/psychology , Pandemics , Prospective Studies
5.
Lancet Healthy Longev ; 2(11): e690-e703, 2021 11.
Article in English | MEDLINE | ID: covidwho-1550176

ABSTRACT

BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 called for innovation in addressing age-related disabilities. Our study aimed to identify and validate a urinary peptidomic profile (UPP) differentiating healthy from unhealthy ageing in the general population, to test the UPP predictor in independent patient cohorts, and to search for targetable molecular pathways underlying age-related chronic diseases. METHODS: In this prospective population study, we used data from participants in the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO), done in northern Belgium from 1985 to 2019, and invited participants to a follow-up examination in 2005-10. Participants were eligible if their address was within 15 km of the examination centre and if they had not withdrawn consent in any of the previous examination cycles (1985-2004). All participants (2005-10) were also invited to an additional follow-up examination in 2009-13. Participants who took part in both the 2005-10 follow-up examination and in the additional 2009-13 follow-up visit constituted the derivation dataset, which included their 2005-10 data, and the time-shifted internal validation dataset, which included their 2009-13 data. The remaining participants who only had 2005-10 data constituted the synchronous internal validation dataset. Participants were excluded from analyses if they were incapacitated, had not undergone UPP, or had either missing or outlying (three SDs greater than the mean of all consenting participants) values of body-mass index, plasma glucose, or serum creatinine. The UPP was assessed by capillary electrophoresis coupled with mass spectrometry. The multidimensional UPP signature reflecting ageing was generated from the derivation dataset and validated in the time-shifted internal validation dataset and the synchronous validation dataset. It was further validated in patients with diabetes, COVID-19, or chronic kidney disease (CKD). In FLEMENGHO, the mortality endpoints were all-cause, cardiovascular, and non-cardiovascular mortality; other endpoints were fatal or non-fatal cancer and musculoskeletal disorders. Molecular pathway exploration was done using the Reactome and Kyoto Encyclopedia of Genes and Genomes databases. FINDINGS: 778 individuals (395 [51%] women and 383 [49%] men; aged 16·2-82·1 years; mean age 50·9 years [SD 15·8]) from the FLEMENGHO cohort had a follow-up examination between 2005 and 2010, of whom 559 participants had a further follow-up from Oct 28, 2009, to March 19, 2013, and made up the derivation (2005-10) and time-shifted internal validation (2009-13) datasets. 219 were examined once and constituted the synchronous internal validation dataset (2005-10). With correction for multiple testing and multivariable adjustment, chronological age was associated with 210 sequenced peptides mainly showing downregulation of collagen fragments. The trained model relating chronological age to UPP, derived by elastic net regression, included 54 peptides from 17 proteins. The UPP-age prediction model explained 76·3% (r=0·87) of chronological age in the derivation dataset, 54·4% (r=0·74) in the time-shifted validation dataset, and 65·3% (r=0·81) in the synchronous internal validation dataset. Compared with chronological age, the predicted UPP-age was greater in patients with diabetes (chronological age 50·8 years [SE 0·37] vs UPP-age 56·9 years [0·30]), COVID­19 (53·2 years [1·80] vs 58·5 years [1·67]), or CKD (54·6 years [0·97] vs 62·3 years [0·85]; all p<0·0001). In the FLEMENGHO cohort, independent of chronological age, UPP-age was significantly associated with various risk markers related to cardiovascular, metabolic, and renal disease, inflammation, and medication use. Over a median of 12·4 years (IQR 10·8-13·2), total mortality, cardiovascular mortality, and osteoporosis in the population was associated with UPP-age independent of chronological age, with hazard ratios per 10 year increase in UPP-age of 1·54 (95% CI 1·22-1·95) for total mortality, 1·72 (1·20-2·47) for cardiovascular mortality, and 1·40 (1·06-1·85) for osteoporosis and fractures. The most relevant molecular pathways informed by the proteins involved deregulation of collagen biology and extracellular matrix maintenance. INTERPRETATION: The UPP signature indicative of ageing reflects fibrosis and extracellular matrix remodelling and was associated with risk factors and adverse health outcomes in the population and with accelerated ageing in patients. Innovation in addressing disability should shift focus from the ontology of diseases to shared disease mechanisms, in particular ageing-related fibrotic degeneration. FUNDING: European Research Council, Ministry of the Flemish Community, OMRON Healthcare.


Subject(s)
COVID-19 , Osteoporosis , Renal Insufficiency, Chronic , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies
6.
Environ Health ; 20(1): 41, 2021 04 10.
Article in English | MEDLINE | ID: covidwho-1175326

ABSTRACT

BACKGROUND: Air pollution is one of the world's leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. METHODS: We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. RESULTS: Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. CONCLUSION: The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , COVID-19/epidemiology , COVID-19/mortality , Environmental Exposure/adverse effects , Humans , Incidence , Nitrogen Dioxide/adverse effects , Ozone/adverse effects , Particulate Matter/adverse effects , Prevalence , Prognosis , Sulfur Dioxide/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL